
TI 2020/2021

Information Theory

Communication over a Noisy Channel

08



Communication over a Noisy Channel -

Notice

! Author 

" João Moura Pires (jmp@fct.unl.pt) 

! This material can be freely used for personal or academic purposes without 

any previous authorization from the author, provided that this notice is 

maintained/kept. 

! For commercial purposes the use of any part of this material requires the 

previous authorization from the author.

2



Communication over a Noisy Channel -

Bibliography

! Many examples are extracted and adapted from: 

! And some slides were based on Iain Murray course  

" http://www.inf.ed.ac.uk/teaching/courses/it/2014/

3

http://www.inf.ed.ac.uk/teaching/courses/it/2014/


Communication over a Noisy Channel -

! The big picture 

! Noise Channels 

! Inferring the input given the output  

! Information conveyed by a channel 

! The noisy-channel coding theorem 

! Intuitive preview of proof 

Table of Contents

4



Communication over a Noisy Channel - 

Information Theory

The big picture

5



Communication over a Noisy Channel -

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

9

Communication over a Noisy Channel

9.1 The big picture
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In Chapters 4–6, we discussed source coding with block codes, symbol codes
and stream codes. We implicitly assumed that the channel from the compres-
sor to the decompressor was noise-free. Real channels are noisy. We will now
spend two chapters on the subject of noisy-channel coding – the fundamen-
tal possibilities and limitations of error-free communication through a noisy
channel. The aim of channel coding is to make the noisy channel behave like
a noiseless channel. We will assume that the data to be transmitted has been
through a good compressor, so the bit stream has no obvious redundancy. The
channel code, which makes the transmission, will put back redundancy of a
special sort, designed to make the noisy received signal decodeable.

Suppose we transmit 1000 bits per second with p0 = p1 = 1/2 over a
noisy channel that flips bits with probability f = 0.1. What is the rate of
transmission of information? We might guess that the rate is 900 bits per
second by subtracting the expected number of errors per second. But this is
not correct, because the recipient does not know where the errors occurred.
Consider the case where the noise is so great that the received symbols are
independent of the transmitted symbols. This corresponds to a noise level of
f = 0.5, since half of the received symbols are correct due to chance alone.
But when f = 0.5, no information is transmitted at all.

Given what we have learnt about entropy, it seems reasonable that a mea-
sure of the information transmitted is given by the mutual information between
the source and the received signal, that is, the entropy of the source minus the
conditional entropy of the source given the received signal.

We will now review the definition of conditional entropy and mutual in-
formation. Then we will examine whether it is possible to use such a noisy
channel to communicate reliably. We will show that for any channel Q there
is a non-zero rate, the capacity C(Q), up to which information can be sent
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! The aim of source coding is data compression, assuming a noise-free channel.

! Real channel are noisy. The aim of channel coding is to make the noisy channel behave 

like a noiseless channel. 
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! The data to be transmitted has been through a good compressor, so the bit stream has no obvious 

redundancy. 

! The channel code, which makes the transmission, will put back redundancy of a special sort, 

designed to make the noisy received signal decodable.
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! Suppose we transmit 1000 bits per second with p0 = p1 = 1/2 over a noisy channel that flips bits with 

probability f = 0.1.

! What is the rate of transmission of information? 

! We might guess that the rate is 900 bits per second by subtracting the expected number of 

errors per second. But this is not correct! because the recipient does not know where the 

errors occurred. 

! Consider the case where the noise level of f = 0.5. 

! Half of the received symbols are correct due to chance alone. 

! But when f = 0.5, no information is transmitted at all. 

! A measure of the information transmitted is given by the mutual information I(Source; Received)
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! A discrete memoryless channel Q is characterized by

! an input alphabet AX, 

! an output alphabet AY , 

! a set of conditional probability distributions P(y | x), one for each x ∈ AX. 

! These transition probabilities may be written in a matrix 

! The output variable j indexing the rows

! The input variable i indexing the columns 

! Each column of Q is a probability vector.

!

Discrete memoryless channel

10

Qj|i = P( y = bj | x = ai )

Qj|i

i

J

py = Qpx

Channel
X Y

P(Y | X)
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! AX = {0, 1};  AY = {0, 1}. 

! f is the probability of flipping a bit. 

! So we assume that f < 0.5

Binary Symmetric Channel

11
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
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If we assume that the input x to a channel comes from an ensemble X, then
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! So we assume that f < 0.5
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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typically won’t know for certain. We can write down the posterior distribution
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If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑
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=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
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= 0.39. (9.5)
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
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P (x | y) =
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P (y)
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.
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P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
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0.85 × 0.1 + 0.15 × 0.9

=
0.085
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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9.9: Solutions 157

the twenty-four people. We could simply communicate a number s from
AS = {1, 2, . . . , 24}, having agreed a mapping of people onto numbers;
alternatively, we could convey a number from AX = {1, 2, . . . , 365},
identifying the day of the year that is the selected person’s birthday
(with apologies to leapyearians). [The receiver is assumed to know all
the people’s birthdays.] What, roughly, is the probability of error of this
communication scheme, assuming it is used for a single transmission?
What is the capacity of the communication channel, and what is the
rate of communication attempted by this scheme?

! Exercise 9.22.[2 ] Now imagine that there are K rooms in a building, each
containing q people. (You might think of K = 2 and q = 24 as an
example.) The aim is to communicate a selection of one person from each
room by transmitting an ordered list of K days (from AX). Compare
the probability of error of the following two schemes.

(a) As before, where each room transmits the birthday of the selected
person.

(b) To each K-tuple of people, one drawn from each room, an ordered
K-tuple of randomly selected days from AX is assigned (this K-
tuple has nothing to do with their birthdays). This enormous list
of S = qK strings is known to the receiver. When the building has
selected a particular person from each room, the ordered string of
days corresponding to that K-tuple of people is transmitted.

What is the probability of error when q = 364 and K = 1? What is the
probability of error when q = 364 and K is large, e.g. K = 6000?

9.9 Solutions

Solution to exercise 9.2 (p.149). If we assume we observe y =0,

P (x=1 | y =0) =
P (y =0 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)
(9.25)

=
0.15 × 0.1

0.15 × 0.1 + 0.85 × 0.9
(9.26)

=
0.015
0.78

= 0.019. (9.27)

Solution to exercise 9.4 (p.149). If we observe y = 0,

P (x=1 | y =0) =
0.15 × 0.1

0.15 × 0.1 + 1.0 × 0.9
(9.28)

=
0.015
0.915

= 0.016. (9.29)

Solution to exercise 9.7 (p.150). The probability that y = 1 is 0.5, so the
mutual information is:

I(X;Y ) = H(Y ) − H(Y |X) (9.30)
= H2(0.5) − H2(0.15) (9.31)
= 1 − 0.61 = 0.39 bits. (9.32)

Solution to exercise 9.8 (p.150). We again compute the mutual information
using I(X;Y ) = H(Y ) − H(Y |X). The probability that y = 0 is 0.575, and
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AS = {1, 2, . . . , 24}, having agreed a mapping of people onto numbers;
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identifying the day of the year that is the selected person’s birthday
(with apologies to leapyearians). [The receiver is assumed to know all
the people’s birthdays.] What, roughly, is the probability of error of this
communication scheme, assuming it is used for a single transmission?
What is the capacity of the communication channel, and what is the
rate of communication attempted by this scheme?

! Exercise 9.22.[2 ] Now imagine that there are K rooms in a building, each
containing q people. (You might think of K = 2 and q = 24 as an
example.) The aim is to communicate a selection of one person from each
room by transmitting an ordered list of K days (from AX). Compare
the probability of error of the following two schemes.

(a) As before, where each room transmits the birthday of the selected
person.

(b) To each K-tuple of people, one drawn from each room, an ordered
K-tuple of randomly selected days from AX is assigned (this K-
tuple has nothing to do with their birthdays). This enormous list
of S = qK strings is known to the receiver. When the building has
selected a particular person from each room, the ordered string of
days corresponding to that K-tuple of people is transmitted.

What is the probability of error when q = 364 and K = 1? What is the
probability of error when q = 364 and K is large, e.g. K = 6000?

9.9 Solutions

Solution to exercise 9.2 (p.149). If we assume we observe y =0,

P (x=1 | y =0) =
P (y =0 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)
(9.25)

=
0.15 × 0.1

0.15 × 0.1 + 0.85 × 0.9
(9.26)

=
0.015
0.78

= 0.019. (9.27)

Solution to exercise 9.4 (p.149). If we observe y = 0,

P (x=1 | y =0) =
0.15 × 0.1

0.15 × 0.1 + 1.0 × 0.9
(9.28)

=
0.015
0.915

= 0.016. (9.29)

Solution to exercise 9.7 (p.150). The probability that y = 1 is 0.5, so the
mutual information is:

I(X;Y ) = H(Y ) − H(Y |X) (9.30)
= H2(0.5) − H2(0.15) (9.31)
= 1 − 0.61 = 0.39 bits. (9.32)

Solution to exercise 9.8 (p.150). We again compute the mutual information
using I(X;Y ) = H(Y ) − H(Y |X). The probability that y = 0 is 0.575, and
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tuple has nothing to do with their birthdays). This enormous list
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days corresponding to that K-tuple of people is transmitted.

What is the probability of error when q = 364 and K = 1? What is the
probability of error when q = 364 and K is large, e.g. K = 6000?
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Solution to exercise 9.2 (p.149). If we assume we observe y =0,

P (x=1 | y =0) =
P (y =0 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)
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=
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0.15 × 0.1 + 0.85 × 0.9
(9.26)

=
0.015
0.78

= 0.019. (9.27)

Solution to exercise 9.4 (p.149). If we observe y = 0,

P (x=1 | y =0) =
0.15 × 0.1

0.15 × 0.1 + 1.0 × 0.9
(9.28)

=
0.015
0.915

= 0.016. (9.29)

Solution to exercise 9.7 (p.150). The probability that y = 1 is 0.5, so the
mutual information is:

I(X;Y ) = H(Y ) − H(Y |X) (9.30)
= H2(0.5) − H2(0.15) (9.31)
= 1 − 0.61 = 0.39 bits. (9.32)

Solution to exercise 9.8 (p.150). We again compute the mutual information
using I(X;Y ) = H(Y ) − H(Y |X). The probability that y = 0 is 0.575, and
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148 9 — Communication over a Noisy Channel

Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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P (y =F |x=G) = 1/3;
P (y =G |x=G) = 1/3;
P (y =H |x=G) = 1/3;
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Z channel. AX ={0, 1}. AY ={0, 1}.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)

0 0.9810

P( y = 0 / x = 1) = 0.15
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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Z channel. AX ={0, 1}. AY ={0, 1}.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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Thus ‘x=1’ is still less probable than ‘x=0’, although it is not as im-
probable as it was before.

Exercise 9.2.[1, p.157] Now assume we observe y =0. Compute the probability
of x=1 given y =0.

Example 9.3. Consider a Z channel with probability of error f =0.15. Let the
input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume we observe y =1.

P (x=1 | y =1) =
0.85 × 0.1

0.85 × 0.1 + 0 × 0.9

=
0.085
0.085

= 1.0. (9.6)

So given the output y =1 we become certain of the input.

Exercise 9.4.[1, p.157] Alternatively, assume we observe y =0. Compute
P (x=1 | y =0).

9.5 Information conveyed by a channel

We now consider how much information can be communicated through a chan-
nel. In operational terms, we are interested in finding ways of using the chan-
nel such that all the bits that are communicated are recovered with negligible
probability of error. In mathematical terms, assuming a particular input en-
semble X, we can measure how much information the output conveys about
the input by the mutual information:

I(X;Y ) ≡ H(X) − H(X |Y ) = H(Y ) − H(Y |X). (9.7)

Our aim is to establish the connection between these two ideas. Let us evaluate
I(X;Y ) for some of the channels above.

Hint for computing mutual information

We will tend to think of I(X;Y ) as H(X) − H(X |Y ), i.e., how much the
uncertainty of the input X is reduced when we look at the output Y . But for
computational purposes it is often handy to evaluate H(Y )−H(Y |X) instead.

H(X,Y )

H(X)

H(Y )

I(X;Y )H(X |Y ) H(Y |X)

Figure 9.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.
This figure is important, so I’m
showing it twice.

Example 9.5. Consider the binary symmetric channel again, with f =0.15 and
PX : {p0 =0.9, p1 =0.1}. We already evaluated the marginal probabil-
ities P (y) implicitly above: P (y =0) = 0.78; P (y =1) = 0.22. The
mutual information is:

I(X;Y ) = H(Y ) − H(Y |X).
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Thus ‘x=1’ is still less probable than ‘x=0’, although it is not as im-
probable as it was before.

Exercise 9.2.[1, p.157] Now assume we observe y =0. Compute the probability
of x=1 given y =0.

Example 9.3. Consider a Z channel with probability of error f =0.15. Let the
input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume we observe y =1.

P (x=1 | y =1) =
0.85 × 0.1

0.85 × 0.1 + 0 × 0.9

=
0.085
0.085

= 1.0. (9.6)

So given the output y =1 we become certain of the input.

Exercise 9.4.[1, p.157] Alternatively, assume we observe y =0. Compute
P (x=1 | y =0).

9.5 Information conveyed by a channel

We now consider how much information can be communicated through a chan-
nel. In operational terms, we are interested in finding ways of using the chan-
nel such that all the bits that are communicated are recovered with negligible
probability of error. In mathematical terms, assuming a particular input en-
semble X, we can measure how much information the output conveys about
the input by the mutual information:

I(X;Y ) ≡ H(X) − H(X |Y ) = H(Y ) − H(Y |X). (9.7)

Our aim is to establish the connection between these two ideas. Let us evaluate
I(X;Y ) for some of the channels above.

Hint for computing mutual information

We will tend to think of I(X;Y ) as H(X) − H(X |Y ), i.e., how much the
uncertainty of the input X is reduced when we look at the output Y . But for
computational purposes it is often handy to evaluate H(Y )−H(Y |X) instead.
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Figure 9.1. The relationship
between joint information,
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This figure is important, so I’m
showing it twice.

Example 9.5. Consider the binary symmetric channel again, with f =0.15 and
PX : {p0 =0.9, p1 =0.1}. We already evaluated the marginal probabil-
ities P (y) implicitly above: P (y =0) = 0.78; P (y =1) = 0.22. The
mutual information is:

I(X;Y ) = H(Y ) − H(Y |X).

So given the output y = 1 we become certain of the input 
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P( y = 1/ x = 1) = 0.85
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I(X ;Y ) = H (X )− H (X |Y )

I(X ;Y ) = H (Y )− H (Y | X )
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! Consider the binary symmetric channel again, with f = 0.15 and PX : {p0 = 0.9, p1 = 0.1}.

! We need P(y) and P(y | x) for

! Compute P(y)

! P(y | x) is defined by the channel

Example with a BSC

22

P( y) = P(x, y)
x
∑

I(X ;Y ) = H (Y )− H (Y | X )

= P( y | x)P(x)
x
∑ = P( y | x = 0)P(x = 0)+ P( y | x = 1)P(x = 1)

P( y = 0) = P( y = 0 | x = 0)P(x = 0)+ P( y = 0 | x = 1)P(x = 1)

P( y = 1) = P( y = 1| x = 0)P(x = 0)+ P( y = 1| x = 1)P(x = 1)

= 0.85× 0.9+ 0.15× 0.1= 0.78

= 0.15× 0.9+ 0.85× 0.1= 0.22
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)

f = 0.15
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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Communication over a Noisy Channel -

! Consider the binary symmetric channel again, with f = 0.15 and PX : {p0 = 0.9, p1 = 0.1}.

! P(y = 0) = 0.78; P(y = 1) = 0.22

! H(Y | X)

Example with a BSC

23

I(X ;Y ) = H (Y )− H (Y | X )

H (Y ) = H2(0.22) H2( p) = p log2
1
p + (1− p) log 1

1− p= 0.76 bits

H (Y | X ) = P(x = 0)H (Y | x = 0)+ P(x = 1)H (Y | x = 1)

H (Y | x = 0) = H2( f ) = H2(0.15)

H (Y | x = 1) = H2( f ) = H2(0.15)

H (Y | X ) = 0.9H2( f )+ 0.1H2( f ) = H2( f ) = H2(0.15)

= 0.61 bits

= 0.61 bits

= 0.61 bits

I(X ;Y ) = H (Y )− H (Y | X )

I(X ;Y ) = H2(0.22)− H2(0.15) = 0.76− 0.61= 0.15 bits H (X ) = H2(0.1) = 0.47 bits
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! Consider the Z channel again, with f = 0.15 and PX : {p0 = 0.9, p1 = 0.1}.

! 1 - f  = 0.85

! Compute I(X;Y)

Example with a Z channel

24

I(X ;Y ) =H (Y )− H (Y | X )

=H2(0.085)− [0.9H2(0)+ 0.1H2(0.15)]

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

148 9 — Communication over a Noisy Channel

Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.

x
!

!

""#$$%1

0

1

0
y P (y =0 |x=0) = 1 − f ;

P (y =1 |x=0) = f ;
P (y =0 |x=1) = f ;
P (y =1 |x=1) = 1 − f. 1

0

0 1

Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.

x
!

!

""#
$$%

1

0

1

0
? y

P (y =0 |x=0) = 1 − f ;
P (y =? |x=0) = f ;
P (y =1 |x=0) = 0;

P (y =0 |x=1) = 0;
P (y =? |x=1) = f ;
P (y =1 |x=1) = 1 − f.

1
?
0

0 1

Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.

!

!
!

&&
&'

((()
-
Z
Y

-
Z
Y

&&
&'

((()

!&&
&'

...((()

&&
&'!&&
&'

((()

!"""#
$$$%

!&&
&'

((()

!&&
&'

((()

!&&
&'

((()

!&&
&'

((()

!&&
&'

((()

!((()

*
*
*
*
*
*
*
*
*
*
*
*+,

,
,
,
,
,
,
,
,
,
,
,-

H H
G G
F F
E E
D D
C C
B B
A A

...
P (y =F |x=G) = 1/3;
P (y =G |x=G) = 1/3;
P (y =H |x=G) = 1/3;

...

-
Z
Y
X
W
V
U
T
S
R
Q
P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z -

Z channel. AX ={0, 1}. AY ={0, 1}.

x
!

!

""#1

0

1

0
y P (y =0 |x=0) = 1;

P (y =1 |x=0) = 0;
P (y =0 |x=1) = f ;
P (y =1 |x=1) = 1 − f. 1

0

0 1

9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)



Communication over a Noisy Channel -

! Consider a Z channel with probability of error f = 0.15.

! Let the input ensemble be PX :{p0 = 0.9, p1 = 0.1}.

! Assume we observe y = 1. 

Example - Z channel 

25
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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Thus ‘x=1’ is still less probable than ‘x=0’, although it is not as im-
probable as it was before.

Exercise 9.2.[1, p.157] Now assume we observe y =0. Compute the probability
of x=1 given y =0.

Example 9.3. Consider a Z channel with probability of error f =0.15. Let the
input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume we observe y =1.

P (x=1 | y =1) =
0.85 × 0.1

0.85 × 0.1 + 0 × 0.9

=
0.085
0.085

= 1.0. (9.6)

So given the output y =1 we become certain of the input.

Exercise 9.4.[1, p.157] Alternatively, assume we observe y =0. Compute
P (x=1 | y =0).

9.5 Information conveyed by a channel

We now consider how much information can be communicated through a chan-
nel. In operational terms, we are interested in finding ways of using the chan-
nel such that all the bits that are communicated are recovered with negligible
probability of error. In mathematical terms, assuming a particular input en-
semble X, we can measure how much information the output conveys about
the input by the mutual information:

I(X;Y ) ≡ H(X) − H(X |Y ) = H(Y ) − H(Y |X). (9.7)

Our aim is to establish the connection between these two ideas. Let us evaluate
I(X;Y ) for some of the channels above.

Hint for computing mutual information

We will tend to think of I(X;Y ) as H(X) − H(X |Y ), i.e., how much the
uncertainty of the input X is reduced when we look at the output Y . But for
computational purposes it is often handy to evaluate H(Y )−H(Y |X) instead.

H(X,Y )

H(X)

H(Y )

I(X;Y )H(X |Y ) H(Y |X)

Figure 9.1. The relationship
between joint information,
marginal entropy, conditional
entropy and mutual entropy.
This figure is important, so I’m
showing it twice.

Example 9.5. Consider the binary symmetric channel again, with f =0.15 and
PX : {p0 =0.9, p1 =0.1}. We already evaluated the marginal probabil-
ities P (y) implicitly above: P (y =0) = 0.78; P (y =1) = 0.22. The
mutual information is:

I(X;Y ) = H(Y ) − H(Y |X).
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Exercise 9.2.[1, p.157] Now assume we observe y =0. Compute the probability
of x=1 given y =0.
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input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume we observe y =1.

P (x=1 | y =1) =
0.85 × 0.1

0.85 × 0.1 + 0 × 0.9
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0.085
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So given the output y =1 we become certain of the input.

Exercise 9.4.[1, p.157] Alternatively, assume we observe y =0. Compute
P (x=1 | y =0).

9.5 Information conveyed by a channel

We now consider how much information can be communicated through a chan-
nel. In operational terms, we are interested in finding ways of using the chan-
nel such that all the bits that are communicated are recovered with negligible
probability of error. In mathematical terms, assuming a particular input en-
semble X, we can measure how much information the output conveys about
the input by the mutual information:

I(X;Y ) ≡ H(X) − H(X |Y ) = H(Y ) − H(Y |X). (9.7)

Our aim is to establish the connection between these two ideas. Let us evaluate
I(X;Y ) for some of the channels above.

Hint for computing mutual information

We will tend to think of I(X;Y ) as H(X) − H(X |Y ), i.e., how much the
uncertainty of the input X is reduced when we look at the output Y . But for
computational purposes it is often handy to evaluate H(Y )−H(Y |X) instead.
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Example 9.5. Consider the binary symmetric channel again, with f =0.15 and
PX : {p0 =0.9, p1 =0.1}. We already evaluated the marginal probabil-
ities P (y) implicitly above: P (y =0) = 0.78; P (y =1) = 0.22. The
mutual information is:

I(X;Y ) = H(Y ) − H(Y |X).

So given the output y = 1 we become certain of the input 

f

P( y = 1/ x = 1) = 0.85



Communication over a Noisy Channel -

! Consider the Z channel again, with f = 0.15 and PX : {p0 = 0.9, p1 = 0.1}.

! P(y = 1) = 0.085

! Compute I(X;Y)

! BSC - I(X; Y) = 0.15 bits 

! Z Channel: I(X; Y) = 0.36 bits 

! The Z channel is a more reliable channel (for the same f) 

Example with a Z channel

26

I(X ;Y ) =H (Y )− H (Y | X )

=H2(0.085)− [0.9H2(0)+ 0.1H2(0.15)]
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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P (y =1 |x=1) = 1 − f. 1
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0 1

Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.
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P (y =1 |x=1) = 1 − f.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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P (y =F |x=G) = 1/3;
P (y =G |x=G) = 1/3;
P (y =H |x=G) = 1/3;
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Z channel. AX ={0, 1}. AY ={0, 1}.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)

f

=0.42− 0.1× 0.61= 0.36 bits



Communication over a Noisy Channel -

! The mutual information between the input and the output depends on the chosen input ensemble !

! To maximize the mutual information conveyed by the channel by choosing the best possible input 

ensemble. We define the capacity of the channel to be its maximum mutual information.

! The capacity of a channel Q is:

! The distribution PX that achieves the maximum is called the optimal input distribution, 

denoted by P*X . 

! There may be multiple optimal input distributions achieving the same value of I(X ; Y)

Maximizing the mutual information

27

C(Q) = max
PX
I(X ;Y )



Communication over a Noisy Channel -

! Consider the binary symmetric channel with f = 0.15. 

! With PX = {p0 = 0.9, p1 = 0.1}, we have I(X; Y) = 0.15 bits 

! What is the maximum of I(X; Y)? For which PX?

! By symmetry, the optimal input distribution is {0.5, 0.5} and the capacity is 0.39 bits.

! Note the mutual information I(X; Y)

Capacity - Example for BSC

28

I(X ;Y ) = H2(0.22)− H2(0.15) = 0.76− 0.61= 0.15 bits

C(QBSC ) = H2(0.5)− H2(0.15) = 1− 0.61= 0.39 bits

I(X ;Y ) = H2((1− f )p1 + (1− p1) f )− H2( f )
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How much better can we do? By symmetry, the optimal input distribu-
tion is {0.5, 0.5} and the capacity is

I(X ; Y )

0

0.1

0.2

0.3

0.4

0 0.25 0.5 0.75 1
p1

Figure 9.2. The mutual
information I(X ; Y ) for a binary
symmetric channel with f = 0.15
as a function of the input
distribution.

C(QBSC) = H2(0.5) − H2(0.15) = 1.0 − 0.61 = 0.39 bits. (9.11)

We’ll justify the symmetry argument later. If there’s any doubt about
the symmetry argument, we can always resort to explicit maximization
of the mutual information I(X;Y ),

I(X;Y ) = H2((1−f)p1 + (1−p1)f) − H2(f) (figure 9.2). (9.12)

Example 9.10. The noisy typewriter. The optimal input distribution is a uni-
form distribution over x, and gives C = log2 9 bits.

Example 9.11. Consider the Z channel with f =0.15. Identifying the optimal
input distribution is not so straightforward. We evaluate I(X;Y ) explic-
itly for PX = {p0, p1}. First, we need to compute P (y). The probability
of y =1 is easiest to write down:

P (y =1) = p1(1 − f). (9.13)

Then the mutual information is:
I(X ; Y )

0
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0.3
0.4
0.5
0.6
0.7

0 0.25 0.5 0.75 1
p1

Figure 9.3. The mutual
information I(X ; Y ) for a Z
channel with f = 0.15 as a
function of the input distribution.

I(X;Y ) = H(Y ) − H(Y |X)
= H2(p1(1 − f)) − (p0H2(0) + p1H2(f))
= H2(p1(1 − f)) − p1H2(f). (9.14)

This is a non-trivial function of p1, shown in figure 9.3. It is maximized
for f = 0.15 by p∗1 = 0.445. We find C(QZ) = 0.685. Notice the optimal
input distribution is not {0.5, 0.5}. We can communicate slightly more
information by using input symbol 0 more frequently than 1.

Exercise 9.12.[1, p.158] What is the capacity of the binary symmetric channel
for general f?

Exercise 9.13.[2, p.158] Show that the capacity of the binary erasure channel
with f = 0.15 is CBEC = 0.85. What is its capacity for general f?
Comment.

9.6 The noisy-channel coding theorem

It seems plausible that the ‘capacity’ we have defined may be a measure of
information conveyed by a channel; what is not obvious, and what we will
prove in the next chapter, is that the capacity indeed measures the rate at
which blocks of data can be communicated over the channel with arbitrarily
small probability of error.

We make the following definitions.

An (N,K) block code for a channel Q is a list of S = 2K codewords

{x(1),x(2), . . . ,x(2K )}, x(s) ∈ AN
X ,

each of length N . Using this code we can encode a signal s ∈
{1, 2, 3, . . . , 2K} as x(s). [The number of codewords S is an integer,
but the number of bits specified by choosing a codeword, K ≡ log2 S, is
not necessarily an integer.]

I(X; Y) for f = 0.15



Communication over a Noisy Channel -

! Consider the binary symmetric channel with f. 

Capacity - Example for BSC

29

I(X ;Y ) = H (Y )− H (Y | X )

I(X ;Y ) = H2((1− f )p1 + (1− p1) f )− H2( f )
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How much better can we do? By symmetry, the optimal input distribu-
tion is {0.5, 0.5} and the capacity is
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symmetric channel with f = 0.15
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C(QBSC) = H2(0.5) − H2(0.15) = 1.0 − 0.61 = 0.39 bits. (9.11)

We’ll justify the symmetry argument later. If there’s any doubt about
the symmetry argument, we can always resort to explicit maximization
of the mutual information I(X;Y ),

I(X;Y ) = H2((1−f)p1 + (1−p1)f) − H2(f) (figure 9.2). (9.12)

Example 9.10. The noisy typewriter. The optimal input distribution is a uni-
form distribution over x, and gives C = log2 9 bits.

Example 9.11. Consider the Z channel with f =0.15. Identifying the optimal
input distribution is not so straightforward. We evaluate I(X;Y ) explic-
itly for PX = {p0, p1}. First, we need to compute P (y). The probability
of y =1 is easiest to write down:

P (y =1) = p1(1 − f). (9.13)

Then the mutual information is:
I(X ; Y )
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I(X;Y ) = H(Y ) − H(Y |X)
= H2(p1(1 − f)) − (p0H2(0) + p1H2(f))
= H2(p1(1 − f)) − p1H2(f). (9.14)

This is a non-trivial function of p1, shown in figure 9.3. It is maximized
for f = 0.15 by p∗1 = 0.445. We find C(QZ) = 0.685. Notice the optimal
input distribution is not {0.5, 0.5}. We can communicate slightly more
information by using input symbol 0 more frequently than 1.

Exercise 9.12.[1, p.158] What is the capacity of the binary symmetric channel
for general f?

Exercise 9.13.[2, p.158] Show that the capacity of the binary erasure channel
with f = 0.15 is CBEC = 0.85. What is its capacity for general f?
Comment.

9.6 The noisy-channel coding theorem

It seems plausible that the ‘capacity’ we have defined may be a measure of
information conveyed by a channel; what is not obvious, and what we will
prove in the next chapter, is that the capacity indeed measures the rate at
which blocks of data can be communicated over the channel with arbitrarily
small probability of error.

We make the following definitions.

An (N,K) block code for a channel Q is a list of S = 2K codewords

{x(1),x(2), . . . ,x(2K )}, x(s) ∈ AN
X ,

each of length N . Using this code we can encode a signal s ∈
{1, 2, 3, . . . , 2K} as x(s). [The number of codewords S is an integer,
but the number of bits specified by choosing a codeword, K ≡ log2 S, is
not necessarily an integer.]

I(X; Y) for f = 0.15
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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Z channel. AX ={0, 1}. AY ={0, 1}.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)

f

P( y = 1) = p1(1− f )+ (1− p1) fH (Y ) = H2((1− f )p1 + (1− p1) f )

H (Y | X ) = p1H2( f )+ (1− p1)H2( f ) = H2( f )

C(QBSC ) = H2(0.5)− H2(0.15) = 1− 0.61= 0.39 bits

p1 = 0.5→ (1− f )p1 + (1− p1) f = 0.5

1



Communication over a Noisy Channel -

! Consider the binary symmetric channel with f. 

Capacity - Example for BSC

30

I(X ;Y ) = H2((1− f )p1 + (1− p1) f )− H2( f )

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

148 9 — Communication over a Noisy Channel

Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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P (y =H |x=G) = 1/3;
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)

f

p1

f = 0.05 

f = 0.1 

f = 0.15 

f = 0.2 
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! Consider the Z channel with f = 0.15. 

Capacity - Example for Z Channel
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I(X; Y) for f = 0.15
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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P (y =G |x=G) = 1/3;
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)

f

P( y = 1) = p1(1− f )

I(X ;Y ) = H (Y )− H (Y | X )

H (Y ) = H2((1− f )p1)

H (Y | X ) = p1H2( f )+ p0H2(0) = p1H2( f )

I(X ;Y ) = H2((1− f )p1)− p1H2( f )
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How much better can we do? By symmetry, the optimal input distribu-
tion is {0.5, 0.5} and the capacity is

I(X ; Y )

0

0.1

0.2

0.3

0.4

0 0.25 0.5 0.75 1
p1

Figure 9.2. The mutual
information I(X ; Y ) for a binary
symmetric channel with f = 0.15
as a function of the input
distribution.

C(QBSC) = H2(0.5) − H2(0.15) = 1.0 − 0.61 = 0.39 bits. (9.11)

We’ll justify the symmetry argument later. If there’s any doubt about
the symmetry argument, we can always resort to explicit maximization
of the mutual information I(X;Y ),

I(X;Y ) = H2((1−f)p1 + (1−p1)f) − H2(f) (figure 9.2). (9.12)

Example 9.10. The noisy typewriter. The optimal input distribution is a uni-
form distribution over x, and gives C = log2 9 bits.

Example 9.11. Consider the Z channel with f =0.15. Identifying the optimal
input distribution is not so straightforward. We evaluate I(X;Y ) explic-
itly for PX = {p0, p1}. First, we need to compute P (y). The probability
of y =1 is easiest to write down:

P (y =1) = p1(1 − f). (9.13)

Then the mutual information is:
I(X ; Y )
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0.4
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0.6
0.7

0 0.25 0.5 0.75 1
p1

Figure 9.3. The mutual
information I(X ; Y ) for a Z
channel with f = 0.15 as a
function of the input distribution.

I(X;Y ) = H(Y ) − H(Y |X)
= H2(p1(1 − f)) − (p0H2(0) + p1H2(f))
= H2(p1(1 − f)) − p1H2(f). (9.14)

This is a non-trivial function of p1, shown in figure 9.3. It is maximized
for f = 0.15 by p∗1 = 0.445. We find C(QZ) = 0.685. Notice the optimal
input distribution is not {0.5, 0.5}. We can communicate slightly more
information by using input symbol 0 more frequently than 1.

Exercise 9.12.[1, p.158] What is the capacity of the binary symmetric channel
for general f?

Exercise 9.13.[2, p.158] Show that the capacity of the binary erasure channel
with f = 0.15 is CBEC = 0.85. What is its capacity for general f?
Comment.

9.6 The noisy-channel coding theorem

It seems plausible that the ‘capacity’ we have defined may be a measure of
information conveyed by a channel; what is not obvious, and what we will
prove in the next chapter, is that the capacity indeed measures the rate at
which blocks of data can be communicated over the channel with arbitrarily
small probability of error.

We make the following definitions.

An (N,K) block code for a channel Q is a list of S = 2K codewords

{x(1),x(2), . . . ,x(2K )}, x(s) ∈ AN
X ,

each of length N . Using this code we can encode a signal s ∈
{1, 2, 3, . . . , 2K} as x(s). [The number of codewords S is an integer,
but the number of bits specified by choosing a codeword, K ≡ log2 S, is
not necessarily an integer.]

! It is maximized for f = 0.15 by p1* = 0.445

! We find C(QZ) = 0.685. 
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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P (y =F |x=G) = 1/3;
P (y =G |x=G) = 1/3;
P (y =H |x=G) = 1/3;
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Z channel. AX ={0, 1}. AY ={0, 1}.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)

I(X ;Y ) = H2((1− f )p1)− p1H2( f )

f = 0.05

f = 0.1

f = 0.15

f = 0.2

p1



Communication over a Noisy Channel -

! AX = AY = the 27 letters {A, B, . . . , Z, -}. 

! When the typist attempts to type B, what comes out is either A, B or C,  

with probability 1/3 each;

! The optimal input distribution is a uniform distribution over x.

! The output distribution is is also a uniform distribution over y.

! For each x, P(y | x) = 1/3 for 3 letters and zero for the others.

Capacity - Example the noisy typewriter 

33

H (Y ) = log2 27 = log2 3
3 bits
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Some useful model channels are:

Binary symmetric channel. AX = {0, 1}. AY ={0, 1}.
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Binary erasure channel. AX = {0, 1}. AY = {0, ?, 1}.
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Noisy typewriter. AX = AY = the 27 letters {A, B, . . . , Z, -}. The letters
are arranged in a circle, and when the typist attempts to type B, what
comes out is either A, B or C, with probability 1/3 each; when the input is
C, the output is B, C or D; and so forth, with the final letter ‘-’ adjacent
to the first letter A.
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Z channel. AX ={0, 1}. AY ={0, 1}.
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)

H (Y | X ) = (31
3
log2 3) = log2 3 bits

I(X ;Y ) = 3log2 3− log2 3= 2log2 3= log2 9 bits

CTypeWritter = log2 9 bits
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Information Theory

The noisy-channel coding theorem

34



Communication over a Noisy Channel -

! It seems plausible that the ‘capacity’ we have defined may be a measure of information 

conveyed by a channel.

! What is not obvious, is that the capacity indeed measures the rate at which blocks of data 

can be communicated over the channel with arbitrarily small probability of error. 

The noisy-channel coding theorem

35



Communication over a Noisy Channel -

! An (N, K) block code for a channel Q is a list of S = 2K codewords  

 

each of length N.

! Using this code we can encode a signal s ∈ {1, 2, 3, …, 2K} as x(s)

! The rate of the code is R = K/N bits per channel use. 

! This definition of the rate for any channel, not only channels with binary inputs 

! It is sometimes conventional to define the rate of a code for a channel with q input symbols to be 

K/(N log q).

(N, K) block code

36

x(1) ,x(2) ,...,x(2
K ){ }, x(s) ∈AX

N ,



Course Overview - 

! Add redundancy to blocks of data instead of encoding one bit at a time  

! A block code is a rule for converting a sequence of source bits s, of length K, say, 

into a transmitted sequence t of length N bits.  

! To add redundancy, N > K  

! In a linear block code, the extra N − K bits are linear functions of the original K bits 

Block Codes (N, K)

37

s

K bits
t

N bits
Encoder

s

K bits
t

N bits
Encoder

s parity-check

R = K/N bits per channel use

RH(7,4) = 0.57 



Communication over a Noisy Channel -

! A decoder for an (N, K) block code is a mapping from the set of length-N strings of 

channel outputs,        , to a codeword label     ∈ {0, 1, 2, . . . , 2K }. 

! The extra symbol     = 0 can be used to indicate a ‘failure’. 

! The probability of block error of a code and decoder, for a given channel, and for a given 

probability distribution over the encoded signal P(sin),  is:

Decoding and the probability of block error

38

AY
N ŝ

ŝ

pB = P(sin )P(sout ≠ sin | sin )
sin

∑
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9

Communication over a Noisy Channel

9.1 The big picture

Noisy
channel

Encoder Decoder

Compressor DecompressorSource
coding

Channel
coding

Source

!
"

"

"

#

#

In Chapters 4–6, we discussed source coding with block codes, symbol codes
and stream codes. We implicitly assumed that the channel from the compres-
sor to the decompressor was noise-free. Real channels are noisy. We will now
spend two chapters on the subject of noisy-channel coding – the fundamen-
tal possibilities and limitations of error-free communication through a noisy
channel. The aim of channel coding is to make the noisy channel behave like
a noiseless channel. We will assume that the data to be transmitted has been
through a good compressor, so the bit stream has no obvious redundancy. The
channel code, which makes the transmission, will put back redundancy of a
special sort, designed to make the noisy received signal decodeable.

Suppose we transmit 1000 bits per second with p0 = p1 = 1/2 over a
noisy channel that flips bits with probability f = 0.1. What is the rate of
transmission of information? We might guess that the rate is 900 bits per
second by subtracting the expected number of errors per second. But this is
not correct, because the recipient does not know where the errors occurred.
Consider the case where the noise is so great that the received symbols are
independent of the transmitted symbols. This corresponds to a noise level of
f = 0.5, since half of the received symbols are correct due to chance alone.
But when f = 0.5, no information is transmitted at all.

Given what we have learnt about entropy, it seems reasonable that a mea-
sure of the information transmitted is given by the mutual information between
the source and the received signal, that is, the entropy of the source minus the
conditional entropy of the source given the received signal.

We will now review the definition of conditional entropy and mutual in-
formation. Then we will examine whether it is possible to use such a noisy
channel to communicate reliably. We will show that for any channel Q there
is a non-zero rate, the capacity C(Q), up to which information can be sent

146

sin sout



Communication over a Noisy Channel -

! The maximal probability of block error is:

! The optimal decoder for a channel code is the one that minimizes the probability of block 

error. 

! It decodes an output y as the input s that has maximum posterior probability P(s | y).

! A uniform prior distribution on s is usually assumed, in which case the optimal decoder is 

also the maximum likelihood decoder, i.e., the decoder that maps an output y to the input s that 

has maximum likelihood P(y | s).

The maximal probability of block error and optimal decoder 

39

pBM = max
sin
P(sout ≠ sin | sin )
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152 9 — Communication over a Noisy Channel

The rate of the code is R = K/N bits per channel use.

[We will use this definition of the rate for any channel, not only chan-
nels with binary inputs; note however that it is sometimes conventional
to define the rate of a code for a channel with q input symbols to be
K/(N log q).]

A decoder for an (N,K) block code is a mapping from the set of length-N
strings of channel outputs, AN

Y , to a codeword label ŝ ∈ {0, 1, 2, . . . , 2K}.
The extra symbol ŝ=0 can be used to indicate a ‘failure’.

The probability of block error of a code and decoder, for a given channel,
and for a given probability distribution over the encoded signal P (sin),
is:

pB =
∑

sin

P (sin)P (sout "=sin | sin). (9.15)

The maximal probability of block error is

pBM = max
sin

P (sout "=sin | sin). (9.16)

The optimal decoder for a channel code is the one that minimizes the prob-
ability of block error. It decodes an output y as the input s that has
maximum posterior probability P (s |y).

P (s |y) =
P (y | s)P (s)∑
s′ P (y | s′)P (s′)

(9.17)

ŝoptimal = argmaxP (s |y). (9.18)

A uniform prior distribution on s is usually assumed, in which case the
optimal decoder is also the maximum likelihood decoder, i.e., the decoder
that maps an output y to the input s that has maximum likelihood
P (y | s).

The probability of bit error pb is defined assuming that the codeword
number s is represented by a binary vector s of length K bits; it is the
average probability that a bit of sout is not equal to the corresponding
bit of sin (averaging over all K bits).

Shannon’s noisy-channel coding theorem (part one). Associated with
each discrete memoryless channel, there is a non-negative number C

!

"

C R

pBM

achievable

Figure 9.4. Portion of the R, pBM

plane asserted to be achievable by
the first part of Shannon’s noisy
channel coding theorem.

(called the channel capacity) with the following property. For any ε > 0
and R < C, for large enough N , there exists a block code of length N and
rate ≥ R and a decoding algorithm, such that the maximal probability
of block error is < ε.

Confirmation of the theorem for the noisy typewriter channel

In the case of the noisy typewriter, we can easily confirm the theorem, because
we can create a completely error-free communication strategy using a block
code of length N = 1: we use only the letters B, E, H, . . . , Z, i.e., every third
letter. These letters form a non-confusable subset of the input alphabet (see
figure 9.5). Any output can be uniquely decoded. The number of inputs
in the non-confusable subset is 9, so the error-free information rate of this
system is log2 9 bits, which is equal to the capacity C, which we evaluated in
example 9.10 (p.151).
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[We will use this definition of the rate for any channel, not only chan-
nels with binary inputs; note however that it is sometimes conventional
to define the rate of a code for a channel with q input symbols to be
K/(N log q).]

A decoder for an (N,K) block code is a mapping from the set of length-N
strings of channel outputs, AN

Y , to a codeword label ŝ ∈ {0, 1, 2, . . . , 2K}.
The extra symbol ŝ=0 can be used to indicate a ‘failure’.

The probability of block error of a code and decoder, for a given channel,
and for a given probability distribution over the encoded signal P (sin),
is:

pB =
∑

sin

P (sin)P (sout "=sin | sin). (9.15)

The maximal probability of block error is

pBM = max
sin

P (sout "=sin | sin). (9.16)

The optimal decoder for a channel code is the one that minimizes the prob-
ability of block error. It decodes an output y as the input s that has
maximum posterior probability P (s |y).

P (s |y) =
P (y | s)P (s)∑
s′ P (y | s′)P (s′)

(9.17)

ŝoptimal = argmaxP (s |y). (9.18)

A uniform prior distribution on s is usually assumed, in which case the
optimal decoder is also the maximum likelihood decoder, i.e., the decoder
that maps an output y to the input s that has maximum likelihood
P (y | s).

The probability of bit error pb is defined assuming that the codeword
number s is represented by a binary vector s of length K bits; it is the
average probability that a bit of sout is not equal to the corresponding
bit of sin (averaging over all K bits).

Shannon’s noisy-channel coding theorem (part one). Associated with
each discrete memoryless channel, there is a non-negative number C
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(called the channel capacity) with the following property. For any ε > 0
and R < C, for large enough N , there exists a block code of length N and
rate ≥ R and a decoding algorithm, such that the maximal probability
of block error is < ε.

Confirmation of the theorem for the noisy typewriter channel

In the case of the noisy typewriter, we can easily confirm the theorem, because
we can create a completely error-free communication strategy using a block
code of length N = 1: we use only the letters B, E, H, . . . , Z, i.e., every third
letter. These letters form a non-confusable subset of the input alphabet (see
figure 9.5). Any output can be uniquely decoded. The number of inputs
in the non-confusable subset is 9, so the error-free information rate of this
system is log2 9 bits, which is equal to the capacity C, which we evaluated in
example 9.10 (p.151).
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! The probability of bit error pb

! Assuming that the codeword number s is represented by a binary vector s of length K bits.

! It is the average probability that a bit of sout is not equal to the corresponding bit of sin 

(averaging over all K bits). 

The probability of bit error - pb
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Communication over a Noisy Channel

9.1 The big picture

Noisy
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In Chapters 4–6, we discussed source coding with block codes, symbol codes
and stream codes. We implicitly assumed that the channel from the compres-
sor to the decompressor was noise-free. Real channels are noisy. We will now
spend two chapters on the subject of noisy-channel coding – the fundamen-
tal possibilities and limitations of error-free communication through a noisy
channel. The aim of channel coding is to make the noisy channel behave like
a noiseless channel. We will assume that the data to be transmitted has been
through a good compressor, so the bit stream has no obvious redundancy. The
channel code, which makes the transmission, will put back redundancy of a
special sort, designed to make the noisy received signal decodeable.

Suppose we transmit 1000 bits per second with p0 = p1 = 1/2 over a
noisy channel that flips bits with probability f = 0.1. What is the rate of
transmission of information? We might guess that the rate is 900 bits per
second by subtracting the expected number of errors per second. But this is
not correct, because the recipient does not know where the errors occurred.
Consider the case where the noise is so great that the received symbols are
independent of the transmitted symbols. This corresponds to a noise level of
f = 0.5, since half of the received symbols are correct due to chance alone.
But when f = 0.5, no information is transmitted at all.

Given what we have learnt about entropy, it seems reasonable that a mea-
sure of the information transmitted is given by the mutual information between
the source and the received signal, that is, the entropy of the source minus the
conditional entropy of the source given the received signal.

We will now review the definition of conditional entropy and mutual in-
formation. Then we will examine whether it is possible to use such a noisy
channel to communicate reliably. We will show that for any channel Q there
is a non-zero rate, the capacity C(Q), up to which information can be sent

146

sin sout
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! Associated with each discrete memoryless channel, there is a non-negative number C (called 

the channel capacity) with the following property: 

! For any ε > 0 and R < C, for large enough N, 

! there exists a block code of length N and rate ≥ R

! and a decoding algorithm, such that the maximal probability of block error is < ε. 

Shannon’s noisy-channel coding theorem (part one)
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The rate of the code is R = K/N bits per channel use.

[We will use this definition of the rate for any channel, not only chan-
nels with binary inputs; note however that it is sometimes conventional
to define the rate of a code for a channel with q input symbols to be
K/(N log q).]

A decoder for an (N,K) block code is a mapping from the set of length-N
strings of channel outputs, AN

Y , to a codeword label ŝ ∈ {0, 1, 2, . . . , 2K}.
The extra symbol ŝ=0 can be used to indicate a ‘failure’.

The probability of block error of a code and decoder, for a given channel,
and for a given probability distribution over the encoded signal P (sin),
is:

pB =
∑

sin

P (sin)P (sout "=sin | sin). (9.15)

The maximal probability of block error is

pBM = max
sin

P (sout "=sin | sin). (9.16)

The optimal decoder for a channel code is the one that minimizes the prob-
ability of block error. It decodes an output y as the input s that has
maximum posterior probability P (s |y).

P (s |y) =
P (y | s)P (s)∑
s′ P (y | s′)P (s′)

(9.17)

ŝoptimal = argmaxP (s |y). (9.18)

A uniform prior distribution on s is usually assumed, in which case the
optimal decoder is also the maximum likelihood decoder, i.e., the decoder
that maps an output y to the input s that has maximum likelihood
P (y | s).

The probability of bit error pb is defined assuming that the codeword
number s is represented by a binary vector s of length K bits; it is the
average probability that a bit of sout is not equal to the corresponding
bit of sin (averaging over all K bits).

Shannon’s noisy-channel coding theorem (part one). Associated with
each discrete memoryless channel, there is a non-negative number C
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C R

pBM

achievable

Figure 9.4. Portion of the R, pBM

plane asserted to be achievable by
the first part of Shannon’s noisy
channel coding theorem.

(called the channel capacity) with the following property. For any ε > 0
and R < C, for large enough N , there exists a block code of length N and
rate ≥ R and a decoding algorithm, such that the maximal probability
of block error is < ε.

Confirmation of the theorem for the noisy typewriter channel

In the case of the noisy typewriter, we can easily confirm the theorem, because
we can create a completely error-free communication strategy using a block
code of length N = 1: we use only the letters B, E, H, . . . , Z, i.e., every third
letter. These letters form a non-confusable subset of the input alphabet (see
figure 9.5). Any output can be uniquely decoded. The number of inputs
in the non-confusable subset is 9, so the error-free information rate of this
system is log2 9 bits, which is equal to the capacity C, which we evaluated in
example 9.10 (p.151).

Block code (N, K)

Rate R = K / N
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! In the case of the noisy typewriter, we can easily confirm the theorem, because we can create 

a completely error-free communication strategy using a block code of length N = 1.

Confirmation of the theorem for the noisy typewriter channel
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Figure 9.5. A non-confusable
subset of inputs for the noisy
typewriter.
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Figure 9.6. Extended channels
obtained from a binary symmetric
channel with transition
probability 0.15.

How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C.

The capacity C is log2 9.

For any ε > 0 and R < C, for large
enough N ,

No matter what ε and R are, we set the blocklength N to 1.

there exists a block code of length N and
rate ≥ R

The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of
block error is < ε.

the maximal probability of block error is zero, which is less
than the given ε.

9.7 Intuitive preview of proof

Extended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |AX |N
possible inputs x and |AY |N possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures
9.6 and 9.7, with N = 2 and N = 4.
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How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C.

The capacity C is log2 9.

For any ε > 0 and R < C, for large
enough N ,

No matter what ε and R are, we set the blocklength N to 1.

there exists a block code of length N and
rate ≥ R

The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of
block error is < ε.

the maximal probability of block error is zero, which is less
than the given ε.

9.7 Intuitive preview of proof

Extended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |AX |N
possible inputs x and |AY |N possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures
9.6 and 9.7, with N = 2 and N = 4.
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! In the case of the noisy typewriter, we can easily confirm the theorem, because we can create 

a completely error-free communication strategy using a block code of length N = 1.

! These letters form a non-confusable subset of the input 

alphabet. Any output can be uniquely decoded. 

! The number of inputs in the non-confusable subset is 9, 

so the error-free information rate of this system is log2 9 bits, 

which is equal to the capacity C. 

Confirmation of the theorem for the noisy typewriter channel
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How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C.

The capacity C is log2 9.

For any ε > 0 and R < C, for large
enough N ,

No matter what ε and R are, we set the blocklength N to 1.

there exists a block code of length N and
rate ≥ R

The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of
block error is < ε.

the maximal probability of block error is zero, which is less
than the given ε.

9.7 Intuitive preview of proof

Extended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |AX |N
possible inputs x and |AY |N possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures
9.6 and 9.7, with N = 2 and N = 4.
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The noisy typewriter channel and the Theorem
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How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C.

The capacity C is log2 9.

For any ε > 0 and R < C, for large
enough N ,

No matter what ε and R are, we set the blocklength N to 1.

there exists a block code of length N and
rate ≥ R

The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of
block error is < ε.

the maximal probability of block error is zero, which is less
than the given ε.

9.7 Intuitive preview of proof

Extended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |AX |N
possible inputs x and |AY |N possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures
9.6 and 9.7, with N = 2 and N = 4.
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! The extended channel corresponding to N uses of the channel.

! The extended channel has |AX|N possible inputs x and |AY |N possible outputs. 

! Extended channels obtained from a binary symmetric channel with f = 0.15 

Extended channels
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Figure 9.6. Extended channels
obtained from a binary symmetric
channel with transition
probability 0.15.

How does this translate into the terms of the theorem? The following table
explains.

The theorem How it applies to the noisy typewriter

Associated with each discrete
memoryless channel, there is a
non-negative number C.

The capacity C is log2 9.

For any ε > 0 and R < C, for large
enough N ,

No matter what ε and R are, we set the blocklength N to 1.

there exists a block code of length N and
rate ≥ R

The block code is {B, E, . . . , Z}. The value of K is given by
2K = 9, so K = log2 9, and this code has rate log2 9, which is
greater than the requested value of R.

and a decoding algorithm, The decoding algorithm maps the received letter to the nearest
letter in the code;

such that the maximal probability of
block error is < ε.

the maximal probability of block error is zero, which is less
than the given ε.

9.7 Intuitive preview of proof

Extended channels

To prove the theorem for any given channel, we consider the extended channel
corresponding to N uses of the channel. The extended channel has |AX |N
possible inputs x and |AY |N possible outputs. Extended channels obtained
from a binary symmetric channel and from a Z channel are shown in figures
9.6 and 9.7, with N = 2 and N = 4.
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Exercise 9.14.[2, p.159] Find the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block-
lengths N . The intuitive idea is that, if N is large, an extended channel looks
a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet – the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N , let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble XN , where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2NH(Y ), all having similar probability. For any particular typical
input sequence x, there are about 2NH(Y |X) probable sequences. Some of these
subsets of AN

Y are depicted by circles in figure 9.8a.
We now imagine restricting ourselves to a subset of the typical inputs

x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by
dividing the size of the typical y set, 2NH(Y ), by the size of each typical-y-
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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! f is the probability of erasing a bit. 

! So we assume that f < 0.5

Binary erasure channel  
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
P (y =1 |x=1)P (x=1)∑

x′ P (y |x′)P (x′)

=
0.85 × 0.1

0.85 × 0.1 + 0.15 × 0.9

=
0.085
0.22

= 0.39. (9.5)
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
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P (y)
=

P (y |x)P (x)∑
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9.4 Inferring the input given the output

If we assume that the input x to a channel comes from an ensemble X, then
we obtain a joint ensemble XY in which the random variables x and y have
the joint distribution:

P (x, y) = P (y |x)P (x). (9.3)

Now if we receive a particular symbol y, what was the input symbol x? We
typically won’t know for certain. We can write down the posterior distribution
of the input using Bayes’ theorem:

P (x | y) =
P (y |x)P (x)

P (y)
=

P (y |x)P (x)∑
x′ P (y |x′)P (x′)

. (9.4)

Example 9.1. Consider a binary symmetric channel with probability of error
f =0.15. Let the input ensemble be PX : {p0 =0.9, p1 =0.1}. Assume
we observe y =1.

P (x=1 | y =1) =
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Figure 9.10. (a) The extended
channel (N = 2) obtained from a
binary erasure channel with
erasure probability 0.15. (b) A
block code consisting of the two
codewords 00 and 11. (c) The
optimal decoder for this code.

Solution to exercise 9.14 (p.153). The extended channel is shown in fig-
ure 9.10. The best code for this channel with N = 2 is obtained by choosing
two columns that have minimal overlap, for example, columns 00 and 11. The
decoding algorithm returns ‘00’ if the extended channel output is among the
top four and ‘11’ if it’s among the bottom four, and gives up if the output is
‘??’.

Solution to exercise 9.15 (p.155). In example 9.11 (p.151) we showed that the
mutual information between input and output of the Z channel is

I(X;Y ) = H(Y ) − H(Y |X)
= H2(p1(1 − f)) − p1H2(f). (9.47)

We differentiate this expression with respect to p1, taking care not to confuse
log2 with loge:

d
dp1

I(X;Y ) = (1 − f) log2
1 − p1(1 − f)

p1(1 − f)
− H2(f). (9.48)

Setting this derivative to zero and rearranging using skills developed in exer-
cise 2.17 (p.36), we obtain:

p∗1(1 − f) =
1

1 + 2H2(f)/(1−f)
, (9.49)

so the optimal input distribution is

p∗1 =
1/(1 − f)

1 + 2(H2(f)/(1−f))
. (9.50)

As the noise level f tends to 1, this expression tends to 1/e (as you can prove
using L’Hôpital’s rule).

For all values of f, p∗1 is smaller than 1/2. A rough intuition for why input
1 is used less than input 0 is that when input 1 is used, the noisy channel
injects entropy into the received string; whereas when input 0 is used, the
noise has zero entropy.

Solution to exercise 9.16 (p.155). The capacities of the three channels are
shown in figure 9.11. For any f < 0.5, the BEC is the channel with highest

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z
BSC
BEC

Figure 9.11. Capacities of the Z
channel, binary symmetric
channel, and binary erasure
channel.

capacity and the BSC the lowest.

Solution to exercise 9.18 (p.155). The logarithm of the posterior probability
ratio, given y, is

a(y) = ln
P (x=1 | y,α,σ)

P (x= − 1 | y,α,σ)
= ln

Q(y |x=1,α,σ)
Q(y |x= − 1,α,σ)

= 2
αy

σ2
. (9.51)
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optimal decoder for this code.

Solution to exercise 9.14 (p.153). The extended channel is shown in fig-
ure 9.10. The best code for this channel with N = 2 is obtained by choosing
two columns that have minimal overlap, for example, columns 00 and 11. The
decoding algorithm returns ‘00’ if the extended channel output is among the
top four and ‘11’ if it’s among the bottom four, and gives up if the output is
‘??’.

Solution to exercise 9.15 (p.155). In example 9.11 (p.151) we showed that the
mutual information between input and output of the Z channel is

I(X;Y ) = H(Y ) − H(Y |X)
= H2(p1(1 − f)) − p1H2(f). (9.47)

We differentiate this expression with respect to p1, taking care not to confuse
log2 with loge:

d
dp1

I(X;Y ) = (1 − f) log2
1 − p1(1 − f)

p1(1 − f)
− H2(f). (9.48)

Setting this derivative to zero and rearranging using skills developed in exer-
cise 2.17 (p.36), we obtain:

p∗1(1 − f) =
1

1 + 2H2(f)/(1−f)
, (9.49)

so the optimal input distribution is

p∗1 =
1/(1 − f)

1 + 2(H2(f)/(1−f))
. (9.50)

As the noise level f tends to 1, this expression tends to 1/e (as you can prove
using L’Hôpital’s rule).

For all values of f, p∗1 is smaller than 1/2. A rough intuition for why input
1 is used less than input 0 is that when input 1 is used, the noisy channel
injects entropy into the received string; whereas when input 0 is used, the
noise has zero entropy.

Solution to exercise 9.16 (p.155). The capacities of the three channels are
shown in figure 9.11. For any f < 0.5, the BEC is the channel with highest
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capacity and the BSC the lowest.

Solution to exercise 9.18 (p.155). The logarithm of the posterior probability
ratio, given y, is

a(y) = ln
P (x=1 | y,α,σ)

P (x= − 1 | y,α,σ)
= ln

Q(y |x=1,α,σ)
Q(y |x= − 1,α,σ)

= 2
αy

σ2
. (9.51)

Overlap 
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! For N = 2

! The decoding algorithm returns ‘00’ if the extended channel output is among the top four and 

‘11’ if it’s among the bottom four, and gives up if the output is ‘??’.

Extended channels for the binary erasure channel
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Solution to exercise 9.14 (p.153). The extended channel is shown in fig-
ure 9.10. The best code for this channel with N = 2 is obtained by choosing
two columns that have minimal overlap, for example, columns 00 and 11. The
decoding algorithm returns ‘00’ if the extended channel output is among the
top four and ‘11’ if it’s among the bottom four, and gives up if the output is
‘??’.

Solution to exercise 9.15 (p.155). In example 9.11 (p.151) we showed that the
mutual information between input and output of the Z channel is

I(X;Y ) = H(Y ) − H(Y |X)
= H2(p1(1 − f)) − p1H2(f). (9.47)

We differentiate this expression with respect to p1, taking care not to confuse
log2 with loge:

d
dp1

I(X;Y ) = (1 − f) log2
1 − p1(1 − f)

p1(1 − f)
− H2(f). (9.48)

Setting this derivative to zero and rearranging using skills developed in exer-
cise 2.17 (p.36), we obtain:

p∗1(1 − f) =
1

1 + 2H2(f)/(1−f)
, (9.49)

so the optimal input distribution is

p∗1 =
1/(1 − f)

1 + 2(H2(f)/(1−f))
. (9.50)

As the noise level f tends to 1, this expression tends to 1/e (as you can prove
using L’Hôpital’s rule).

For all values of f, p∗1 is smaller than 1/2. A rough intuition for why input
1 is used less than input 0 is that when input 1 is used, the noisy channel
injects entropy into the received string; whereas when input 0 is used, the
noise has zero entropy.

Solution to exercise 9.16 (p.155). The capacities of the three channels are
shown in figure 9.11. For any f < 0.5, the BEC is the channel with highest
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capacity and the BSC the lowest.

Solution to exercise 9.18 (p.155). The logarithm of the posterior probability
ratio, given y, is

a(y) = ln
P (x=1 | y,α,σ)

P (x= − 1 | y,α,σ)
= ln

Q(y |x=1,α,σ)
Q(y |x= − 1,α,σ)

= 2
αy

σ2
. (9.51)



Communication over a Noisy Channel -

! To prove the noisy-channel coding theorem, we make use of large block-lengths N.

! The intuitive idea is that, if N is large, an extended channel looks a lot like the noisy typewriter. 

! Any particular input x is very likely to produce an output in a small subspace of the output alphabet 

– the typical output set, given that input. 

! So we can find a non-confusable subset of the inputs 

that produce essentially disjoint output sequences. 

Intuitive preview of proof
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Solution to exercise 9.14 (p.153). The extended channel is shown in fig-
ure 9.10. The best code for this channel with N = 2 is obtained by choosing
two columns that have minimal overlap, for example, columns 00 and 11. The
decoding algorithm returns ‘00’ if the extended channel output is among the
top four and ‘11’ if it’s among the bottom four, and gives up if the output is
‘??’.

Solution to exercise 9.15 (p.155). In example 9.11 (p.151) we showed that the
mutual information between input and output of the Z channel is

I(X;Y ) = H(Y ) − H(Y |X)
= H2(p1(1 − f)) − p1H2(f). (9.47)

We differentiate this expression with respect to p1, taking care not to confuse
log2 with loge:

d
dp1

I(X;Y ) = (1 − f) log2
1 − p1(1 − f)

p1(1 − f)
− H2(f). (9.48)

Setting this derivative to zero and rearranging using skills developed in exer-
cise 2.17 (p.36), we obtain:

p∗1(1 − f) =
1

1 + 2H2(f)/(1−f)
, (9.49)

so the optimal input distribution is

p∗1 =
1/(1 − f)

1 + 2(H2(f)/(1−f))
. (9.50)

As the noise level f tends to 1, this expression tends to 1/e (as you can prove
using L’Hôpital’s rule).

For all values of f, p∗1 is smaller than 1/2. A rough intuition for why input
1 is used less than input 0 is that when input 1 is used, the noisy channel
injects entropy into the received string; whereas when input 0 is used, the
noise has zero entropy.

Solution to exercise 9.16 (p.155). The capacities of the three channels are
shown in figure 9.11. For any f < 0.5, the BEC is the channel with highest
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capacity and the BSC the lowest.

Solution to exercise 9.18 (p.155). The logarithm of the posterior probability
ratio, given y, is

a(y) = ln
P (x=1 | y,α,σ)

P (x= − 1 | y,α,σ)
= ln

Q(y |x=1,α,σ)
Q(y |x= − 1,α,σ)

= 2
αy

σ2
. (9.51)
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! For a given N, how to generating such a non-confusable subset of the inputs, and count up how 

many distinct inputs it contains?

! Let x  be an input sequence for the extended channel by drawing it from an ensemble XN 

! The total number of typical output sequences y is 2NH(Y).

! For any particular typical input sequence x, there are about 2NH(Y | X) probable sequences 

Intuitive preview of proof
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transition probability 0.15. Each
column corresponds to an input,
and each row is a different output.
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Figure 9.8. (a) Some typical
outputs in AN

Y corresponding to
typical inputs x. (b) A subset of
the typical sets shown in (a) that
do not overlap each other. This
picture can be compared with the
solution to the noisy typewriter in
figure 9.5.

Exercise 9.14.[2, p.159] Find the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block-
lengths N . The intuitive idea is that, if N is large, an extended channel looks
a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet – the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N , let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble XN , where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2NH(Y ), all having similar probability. For any particular typical
input sequence x, there are about 2NH(Y |X) probable sequences. Some of these
subsets of AN

Y are depicted by circles in figure 9.8a.
We now imagine restricting ourselves to a subset of the typical inputs

x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by
dividing the size of the typical y set, 2NH(Y ), by the size of each typical-y-
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! We now imagine restricting ourselves to a subset of the typical inputs x such that the 

corresponding typical output sets do not overlap.

! We can then bound the number of non-confusable inputs by dividing the size of the typical y set, 

2NH(Y), by the size of each typical-y given-typical-x set, 2NH(Y|X) 

Intuitive preview of proof
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Y corresponding to
typical inputs x. (b) A subset of
the typical sets shown in (a) that
do not overlap each other. This
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solution to the noisy typewriter in
figure 9.5.

Exercise 9.14.[2, p.159] Find the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block-
lengths N . The intuitive idea is that, if N is large, an extended channel looks
a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet – the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N , let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble XN , where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2NH(Y ), all having similar probability. For any particular typical
input sequence x, there are about 2NH(Y |X) probable sequences. Some of these
subsets of AN

Y are depicted by circles in figure 9.8a.
We now imagine restricting ourselves to a subset of the typical inputs

x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by
dividing the size of the typical y set, 2NH(Y ), by the size of each typical-y-
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! We now imagine restricting ourselves to a subset of the typical inputs x such that the corresponding 

typical output sets do not overlap.

! We can then bound the number of non-confusable inputs by dividing the size of the typical y set, 

2NH(Y), by the size of each typical-y given-typical-x set, 2NH(Y|X)

! So the number of non-confusable inputs, if they  

are selected from the set of typical inputs x ∼ XN ,  

is ≤ 2NH(Y)−NH(Y | X) = 2NI(X; Y). 

! The maximum value of this bound is achieved if X 

is the ensemble that maximizes I(X; Y), in which case the 

number of non-confusable inputs is ≤ 2NC

Intuitive preview of proof
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Exercise 9.14.[2, p.159] Find the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block-
lengths N . The intuitive idea is that, if N is large, an extended channel looks
a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet – the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N , let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble XN , where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2NH(Y ), all having similar probability. For any particular typical
input sequence x, there are about 2NH(Y |X) probable sequences. Some of these
subsets of AN

Y are depicted by circles in figure 9.8a.
We now imagine restricting ourselves to a subset of the typical inputs

x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by
dividing the size of the typical y set, 2NH(Y ), by the size of each typical-y-
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! We can then bound the number of non-confusable inputs by dividing the size of the typical y set, 

2NH(Y), by the size of each typical-y given-typical-x set, 2NH(Y|X)

! So the number of non-confusable inputs, if they are selected from the set of typical inputs x ∼ XN ,  

is ≤ 2NH(Y)−NH(Y | X) = 2NI(X; Y). 

! The maximum value of this bound is achieved if X 

is the ensemble that maximizes I(X; Y), in which case the 

number of non-confusable inputs is ≤ 2NCcv

! Thus asymptotically up to C bits per cycle, and no more,  

can be communicated with vanishing error probability. 

Intuitive preview of proof
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(a) (b)

Figure 9.8. (a) Some typical
outputs in AN

Y corresponding to
typical inputs x. (b) A subset of
the typical sets shown in (a) that
do not overlap each other. This
picture can be compared with the
solution to the noisy typewriter in
figure 9.5.

Exercise 9.14.[2, p.159] Find the transition probability matrices Q for the ex-
tended channel, with N = 2, derived from the binary erasure channel
having erasure probability 0.15.

By selecting two columns of this transition probability matrix, we can
define a rate-1/2 code for this channel with blocklength N = 2. What is
the best choice of two columns? What is the decoding algorithm?

To prove the noisy-channel coding theorem, we make use of large block-
lengths N . The intuitive idea is that, if N is large, an extended channel looks
a lot like the noisy typewriter. Any particular input x is very likely to produce
an output in a small subspace of the output alphabet – the typical output set,
given that input. So we can find a non-confusable subset of the inputs that
produce essentially disjoint output sequences. For a given N , let us consider
a way of generating such a non-confusable subset of the inputs, and count up
how many distinct inputs it contains.

Imagine making an input sequence x for the extended channel by drawing
it from an ensemble XN , where X is an arbitrary ensemble over the input
alphabet. Recall the source coding theorem of Chapter 4, and consider the
number of probable output sequences y. The total number of typical output
sequences y is 2NH(Y ), all having similar probability. For any particular typical
input sequence x, there are about 2NH(Y |X) probable sequences. Some of these
subsets of AN

Y are depicted by circles in figure 9.8a.
We now imagine restricting ourselves to a subset of the typical inputs

x such that the corresponding typical output sets do not overlap, as shown
in figure 9.8b. We can then bound the number of non-confusable inputs by
dividing the size of the typical y set, 2NH(Y ), by the size of each typical-y-
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Communication over a Noisy Channel -

Further Reading
! Recommend Readings 

" Information Theory, Inference, and Learning Algorithms from David MacKay, 2015, 

pages 146 - 160. 

! Supplemental readings:
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What you should know
! What is the purpose of source code and the purpose of channel code.

! The idea that the information transmitted depends on the input probability distribution

! Some common channels: BSC, Z, EBC, TypeWitter 

! How to infer the input based on the output

! The Channel capacity and the mutual information; the concept of optimal input distribution

! How to compute a channel capacity for some common channels 

! The concepts of probability of block error, the maximal probability of block error and The probability 

of bit error.

! Understanding the Shannon’s noisy-channel coding theorem (part one) and the corresponding general 

strategy for channel coders.  
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